Cargando…

Electrophysiological findings of Turkish patients with restless legs syndrome

We aimed to investigate changes in electrophysiological findings in Turkish patients with restless legs syndrome (RLS), including F-wave latency (FWL), peripheral silent period (PSP), and Hoffmann reflex. The study took place in a university hospital in Turkey and involved 30 newly diagnosed RLS pat...

Descripción completa

Detalles Bibliográficos
Autores principales: Özsimsek, Ahmet, Koyuncuoglu, Hasan Rifat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5538691/
https://www.ncbi.nlm.nih.gov/pubmed/28794635
http://dx.doi.org/10.2147/NDT.S132903
Descripción
Sumario:We aimed to investigate changes in electrophysiological findings in Turkish patients with restless legs syndrome (RLS), including F-wave latency (FWL), peripheral silent period (PSP), and Hoffmann reflex. The study took place in a university hospital in Turkey and involved 30 newly diagnosed RLS patients and 30 healthy controls who were matched for age and gender. Participant’s demographics (age, gender, weight, and height), laboratory findings, and electrophysiological test outcomes were gathered and analyzed. There was no significant difference in the FWL of the median and ulnar nerves, whereas the H-wave maximum amplitude and H/M ratio were significantly higher in the RLS patients than in the controls at rest. All of the PSP parameters were similar between patients and controls for the abductor pollicis brevis and gastrocnemius muscles. However, for the tibialis anterior muscle, all the PSP duration parameters were shorter in the RLS patients, whereas the PSP latency parameters were similar. The data suggest that there may be a reduction in spinal segmental inhibition at the L4–L5–S1 level, but the mechanisms of inhibition at the L4–L5 and S1 levels may be different; furthermore, there may be no pathology in the peripheral nerves. Further prospective studies with larger cohorts are now needed to evaluate the pathophysiology of RLS with different neurophysiological assessment tools.