Cargando…
Improving satellite-based PM(2.5) estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting
Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM(2.5) is a promising way to fill the areas that are not covered by ground PM(2.5) monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Ge...
Autores principales: | Yu, Wenxi, Liu, Yang, Ma, Zongwei, Bi, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539114/ https://www.ncbi.nlm.nih.gov/pubmed/28765549 http://dx.doi.org/10.1038/s41598-017-07478-0 |
Ejemplares similares
-
Satellite-Based Spatiotemporal Trends in PM(2.5) Concentrations: China, 2004–2013
por: Ma, Zongwei, et al.
Publicado: (2015) -
Spatiotemporal Variations of Indoor PM(2.5) Concentrations in Nanjing, China
por: Shao, Zhijuan, et al.
Publicado: (2019) -
The View from Afar: Satellite-Derived Estimates of Global PM(2.5)
por: Konkel, Lindsey
Publicado: (2015) -
A Bayesian Hierarchical Approach for Relating PM(2.5) Exposure to Cardiovascular Mortality in North Carolina
por: Holloman, Christopher H., et al.
Publicado: (2004) -
The Provincial Baseline of PM(2.5) in China and Its Hierarchical Management Strategy
por: Jin, Doudou, et al.
Publicado: (2022)