Cargando…
Improving Urban Stormwater Runoff Quality by Nutrient Removal through Floating Treatment Wetlands and Vegetation Harvest
Two floating treatment wetlands (FTWs) in experimental tanks were compared in terms of their effectiveness on removing nutrients. The results showed that the FTWs were dominated by emergent wetland plants and were constructed to remove nutrients from simulated urban stormwater. Iris pseudacorus and...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539159/ https://www.ncbi.nlm.nih.gov/pubmed/28765586 http://dx.doi.org/10.1038/s41598-017-07439-7 |
Sumario: | Two floating treatment wetlands (FTWs) in experimental tanks were compared in terms of their effectiveness on removing nutrients. The results showed that the FTWs were dominated by emergent wetland plants and were constructed to remove nutrients from simulated urban stormwater. Iris pseudacorus and Thalia dealbata wetland systems were effective in reducing the nutrient. T. dealbata FTWs showed higher nutrient removal performance than I. pseudacorus FTWs. Nitrogen (N) and phosphorous (P) removal rates in water by T. dealbata FTWs were 3.95 ± 0.19 and 0.15 ± 0.01 g/m(2)/day, respectively. For I. pseudacorus FTWs, the TN and TP removal rates were 3.07 ± 0.15 and 0.14 ± 0.01 g/m(2)/day, respectively. The maximum absolute growth rate for T. dealbata corresponded directly with the maximum mean nutrient removal efficiency during the 5th stage. At harvest, N and P uptak of T. dealbata was 23.354 ± 1.366 g and 1.489 ± 0.077 g per plant, respectively, approximate twice as high as by I. pseudacorus. |
---|