Cargando…

Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors

The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Bussolotti, F., Yang, J., Yamaguchi, T., Yonezawa, K., Sato, K., Matsunami, M., Tanaka, K., Nakayama, Y., Ishii, H., Ueno, N., Kera, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539254/
https://www.ncbi.nlm.nih.gov/pubmed/28765525
http://dx.doi.org/10.1038/s41467-017-00241-z
Descripción
Sumario:The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. Here, we report on the electronic properties of rubrene single crystal as investigated by angle resolved ultraviolet photoelectron spectroscopy. A gap opening and kink-like features in the rubrene electronic band dispersion are observed. In particular, the latter results in a large enhancement of the hole effective mass (> 1.4), well above the limit of the theoretical estimations. The results are consistent with the expected modifications of the band structures in organic semiconductors as introduced by hole-phonon coupling effects and represent an important experimental step toward the understanding of the charge localization phenomena in organic materials.