Cargando…
Network Inference and Maximum Entropy Estimation on Information Diagrams
Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we...
Autores principales: | Martin, Elliot A., Hlinka, Jaroslav, Meinke, Alexander, Děchtěrenko, Filip, Tintěra, Jaroslav, Oliver, Isaura, Davidsen, Jörn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539257/ https://www.ncbi.nlm.nih.gov/pubmed/28765522 http://dx.doi.org/10.1038/s41598-017-06208-w |
Ejemplares similares
-
Quantifying the Variability in Resting-State Networks
por: Oliver, Isaura, et al.
Publicado: (2019) -
Personality reflection in the brain’s intrinsic functional architecture remains elusive
por: Tomeček, David, et al.
Publicado: (2020) -
Typicality of functional connectivity robustly captures motion artifacts in rs‐fMRI across datasets, atlases, and preprocessing pipelines
por: Kopal, Jakub, et al.
Publicado: (2020) -
Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis—Unlocking the Resting-State fMRI Data
por: Bučková, Barbora, et al.
Publicado: (2021) -
Maximum-Entropy Inference with a Programmable Annealer
por: Chancellor, Nicholas, et al.
Publicado: (2016)