Cargando…
Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments
The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument pla...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539513/ https://www.ncbi.nlm.nih.gov/pubmed/28753910 http://dx.doi.org/10.3390/s17071653 |
_version_ | 1783254494477287424 |
---|---|
author | Peterson, Philip J. D. Aujla, Amrita Grant, Kirsty H. Brundle, Alex G. Thompson, Martin R. Vande Hey, Josh Leigh, Roland J. |
author_facet | Peterson, Philip J. D. Aujla, Amrita Grant, Kirsty H. Brundle, Alex G. Thompson, Martin R. Vande Hey, Josh Leigh, Roland J. |
author_sort | Peterson, Philip J. D. |
collection | PubMed |
description | The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 [Formula: see text] and ozone precision of 26.8 [Formula: see text] , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment. |
format | Online Article Text |
id | pubmed-5539513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55395132017-08-11 Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments Peterson, Philip J. D. Aujla, Amrita Grant, Kirsty H. Brundle, Alex G. Thompson, Martin R. Vande Hey, Josh Leigh, Roland J. Sensors (Basel) Article The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 [Formula: see text] and ozone precision of 26.8 [Formula: see text] , for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment. MDPI 2017-07-19 /pmc/articles/PMC5539513/ /pubmed/28753910 http://dx.doi.org/10.3390/s17071653 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peterson, Philip J. D. Aujla, Amrita Grant, Kirsty H. Brundle, Alex G. Thompson, Martin R. Vande Hey, Josh Leigh, Roland J. Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title | Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title_full | Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title_fullStr | Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title_full_unstemmed | Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title_short | Practical Use of Metal Oxide Semiconductor Gas Sensors for Measuring Nitrogen Dioxide and Ozone in Urban Environments |
title_sort | practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539513/ https://www.ncbi.nlm.nih.gov/pubmed/28753910 http://dx.doi.org/10.3390/s17071653 |
work_keys_str_mv | AT petersonphilipjd practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT aujlaamrita practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT grantkirstyh practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT brundlealexg practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT thompsonmartinr practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT vandeheyjosh practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments AT leighrolandj practicaluseofmetaloxidesemiconductorgassensorsformeasuringnitrogendioxideandozoneinurbanenvironments |