Cargando…

Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network

Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous...

Descripción completa

Detalles Bibliográficos
Autores principales: Pham, Tuyen Danh, Lee, Dong Eun, Park, Kang Ryoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539635/
https://www.ncbi.nlm.nih.gov/pubmed/28698466
http://dx.doi.org/10.3390/s17071595
Descripción
Sumario:Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.