Cargando…

Surface Acoustic Wave Sensor with Pd/ZnO Bilayer Structure for Room Temperature Hydrogen Detection

A Surface Acoustic Wave (SAW) hydrogen sensor with a Pd/ZnO bilayer structure for room temperature sensing operation has been obtained by Pulsed Laser Deposition (PLD). The sensor structure combines a Pd layer with optimized porosity for maximizing mass effects, with the large acoustoelectric effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Viespe, Cristian, Miu, Dana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539646/
https://www.ncbi.nlm.nih.gov/pubmed/28661439
http://dx.doi.org/10.3390/s17071529
Descripción
Sumario:A Surface Acoustic Wave (SAW) hydrogen sensor with a Pd/ZnO bilayer structure for room temperature sensing operation has been obtained by Pulsed Laser Deposition (PLD). The sensor structure combines a Pd layer with optimized porosity for maximizing mass effects, with the large acoustoelectric effect at the Pd/ZnO interface. The large acoustoelectric effect is due to the fact that ZnO has a surface conductivity which is highly sensitive to chemisorbed gases. The sensitivity of the sensor was determined for hydrogen concentrations between 0.2% and 2%. The limit of detection (LOD) of the bilayer sensor was about 4.5 times better than the single ZnO films and almost twice better than single Pd films.