Cargando…
Variable selection for disease progression models: methods for oncogenetic trees and application to cancer and HIV
BACKGROUND: Disease progression models are important for understanding the critical steps during the development of diseases. The models are imbedded in a statistical framework to deal with random variations due to biology and the sampling process when observing only a finite population. Conditional...
Autores principales: | Hainke, Katrin, Szugat, Sebastian, Fried, Roland, Rahnenführer, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539896/ https://www.ncbi.nlm.nih.gov/pubmed/28764644 http://dx.doi.org/10.1186/s12859-017-1762-1 |
Ejemplares similares
-
Oncogenetic landscape of lymphomagenesis in coeliac disease
por: Cording, Sascha, et al.
Publicado: (2022) -
The Use of a Diagnostic Database in Clinical Oncogenetics
por: Sijmons, Rolf H, et al.
Publicado: (2003) -
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2021) -
Correction to: Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2022) -
INCT in oncogenetics focusing on hereditary breast-colorectal carcinoma syndrome
por: Rogatto, Silvia Regina
Publicado: (2013)