Cargando…

Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of infla...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomita, Michiyo, Holman, Brita J, Santoro, Christopher P, Santoro, Thomas J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC553992/
https://www.ncbi.nlm.nih.gov/pubmed/15733321
http://dx.doi.org/10.1186/1742-2094-2-8
_version_ 1782122498796552192
author Tomita, Michiyo
Holman, Brita J
Santoro, Christopher P
Santoro, Thomas J
author_facet Tomita, Michiyo
Holman, Brita J
Santoro, Christopher P
Santoro, Thomas J
author_sort Tomita, Michiyo
collection PubMed
description BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate. CONCLUSION: Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS.
format Text
id pubmed-553992
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5539922005-03-11 Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription Tomita, Michiyo Holman, Brita J Santoro, Christopher P Santoro, Thomas J J Neuroinflammation Research BACKGROUND: In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2) is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS). The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. METHODS: Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. RESULTS: The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti-oxidant, epigallocatechin gallate. CONCLUSION: Our results indicate that curcumin potently inhibits MIP-2 production at the level of gene transcription and offer further support for its potential use in the treatment of inflammatory conditions of the CNS. BioMed Central 2005-02-25 /pmc/articles/PMC553992/ /pubmed/15733321 http://dx.doi.org/10.1186/1742-2094-2-8 Text en Copyright © 2005 Tomita et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Tomita, Michiyo
Holman, Brita J
Santoro, Christopher P
Santoro, Thomas J
Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title_full Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title_fullStr Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title_full_unstemmed Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title_short Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
title_sort astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC553992/
https://www.ncbi.nlm.nih.gov/pubmed/15733321
http://dx.doi.org/10.1186/1742-2094-2-8
work_keys_str_mv AT tomitamichiyo astrocyteproductionofthechemokinemacrophageinflammatoryprotein2isinhibitedbythespiceprinciplecurcuminatthelevelofgenetranscription
AT holmanbritaj astrocyteproductionofthechemokinemacrophageinflammatoryprotein2isinhibitedbythespiceprinciplecurcuminatthelevelofgenetranscription
AT santorochristopherp astrocyteproductionofthechemokinemacrophageinflammatoryprotein2isinhibitedbythespiceprinciplecurcuminatthelevelofgenetranscription
AT santorothomasj astrocyteproductionofthechemokinemacrophageinflammatoryprotein2isinhibitedbythespiceprinciplecurcuminatthelevelofgenetranscription