Cargando…
Build a Robust Learning Feature Descriptor by Using a New Image Visualization Method for Indoor Scenario Recognition
In order to recognize indoor scenarios, we extract image features for detecting objects, however, computers can make some unexpected mistakes. After visualizing the histogram of oriented gradient (HOG) features, we find that the world through the eyes of a computer is indeed different from human eye...
Autores principales: | Jiao, Jichao, Wang, Xin, Deng, Zhongliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539970/ https://www.ncbi.nlm.nih.gov/pubmed/28677635 http://dx.doi.org/10.3390/s17071569 |
Ejemplares similares
-
A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the Assistance of Deep CNN
por: Jiao, Jichao, et al.
Publicado: (2017) -
Robust Visual Odometry Leveraging Mixture of Manhattan Frames in Indoor Environments
por: Yuan, Huayu, et al.
Publicado: (2022) -
Prediction of Indoor Air Temperature Using Weather Data and Simple Building Descriptors
por: Aguilera, José Joaquín, et al.
Publicado: (2019) -
On-Device Mobile Visual Location Recognition by Using Panoramic Images and Compressed Sensing Based Visual Descriptors
por: Guan, Tao, et al.
Publicado: (2014) -
Colour and Texture Descriptors for Visual Recognition: A Historical Overview
por: Bianconi, Francesco, et al.
Publicado: (2021)