Cargando…

Control of nacre biomineralization by Pif80 in pearl oyster

Molluscan nacre is a fascinating biomineral consisting of a highly organized calcium carbonate composite that provides unique fracture toughness and an iridescent color. Organisms elaborately control biomineralization using organic macromolecules. We propose the involvement of the matrix protein Pif...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahn, So Yeong, Jo, Byung Hoon, Choi, Yoo Seong, Cha, Hyung Joon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540247/
https://www.ncbi.nlm.nih.gov/pubmed/28782039
http://dx.doi.org/10.1126/sciadv.1700765
Descripción
Sumario:Molluscan nacre is a fascinating biomineral consisting of a highly organized calcium carbonate composite that provides unique fracture toughness and an iridescent color. Organisms elaborately control biomineralization using organic macromolecules. We propose the involvement of the matrix protein Pif80 from the pearl oyster Pinctada fucata in the development of the inorganic phase during nacre biomineralization, based on experiments using the recombinant form of Pif80. Through interactions with calcium ions, Pif80 participates in the formation of polymer-induced liquid precursor–like amorphous calcium carbonate granules and stabilizes these granules by forming calcium ion–induced coacervates. At the calcification site, the disruption of Pif80 coacervates destabilizes the amorphous mineral precursors, resulting in the growth of a crystalline structure. The redissolved Pif80 controls the growth of aragonite on the polysaccharide substrate, which contributes to the formation of polygonal tablet structure of nacre. Our findings provide insight into the use of organic macromolecules by living organisms in biomineralization.