Cargando…
Improved k-t PCA Algorithm Using Artificial Sparsity in Dynamic MRI
The k-t principal component analysis (k-t PCA) is an effective approach for high spatiotemporal resolution dynamic magnetic resonance (MR) imaging. However, it suffers from larger residual aliasing artifacts and noise amplification when the reduction factor goes higher. To further enhance the perfor...
Autores principales: | Wang, Yiran, Chen, Zhifeng, Wang, Jing, Yuan, Lixia, Xia, Ling, Liu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540396/ https://www.ncbi.nlm.nih.gov/pubmed/28804506 http://dx.doi.org/10.1155/2017/4816024 |
Ejemplares similares
-
A Feasibility Study of Geometric-Decomposition Coil Compression in MRI Radial Acquisitions
por: Wang, Jing, et al.
Publicado: (2017) -
Sparsity: Graphs, Structures, and Algorithms
por: Nešetril, Jaroslav, et al.
Publicado: (2012) -
Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints
por: Liu, Ryan Wen, et al.
Publicado: (2017) -
Compressed sensing cardiac MRI exploiting spatio-temporal sparsity
por: Zamani, Jafar, et al.
Publicado: (2013) -
Synchronized cardiac and respiratory sparsity for rapid free-breathing cardiac cine MRI
por: Feng, Li, et al.
Publicado: (2014)