Cargando…
Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response
BACKGROUND: The advent of big data in biology offers opportunities while poses challenges to derive biological insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a comprehensive analysis is lacking. RESULTS: We constructed a maize gene co-express...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540570/ https://www.ncbi.nlm.nih.gov/pubmed/28764653 http://dx.doi.org/10.1186/s12870-017-1077-4 |
_version_ | 1783254661577310208 |
---|---|
author | Ma, Shisong Ding, Zehong Li, Pinghua |
author_facet | Ma, Shisong Ding, Zehong Li, Pinghua |
author_sort | Ma, Shisong |
collection | PubMed |
description | BACKGROUND: The advent of big data in biology offers opportunities while poses challenges to derive biological insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a comprehensive analysis is lacking. RESULTS: We constructed a maize gene co-expression network based on the graphical Gaussian model, using massive RNA-seq data. The network, containing 20,269 genes, assembles into 964 gene modules that function in a variety of plant processes, such as cell organization, the development of inflorescences, ligules and kernels, the uptake and utilization of nutrients (e.g. nitrogen and phosphate), the metabolism of benzoxazionids, oxylipins, flavonoids, and wax, and the response to stresses. Among them, the inflorescences development module is enriched with domestication genes (like ra1, ba1, gt1, tb1, tga1) that control plant architecture and kernel structure, while multiple other modules relate to diverse agronomic traits. Contained within these modules are transcription factors acting as known or potential expression regulators for the genes within the same modules, suggesting them as candidate regulators for related biological processes. A comparison with an established Arabidopsis network revealed conserved gene association patterns for specific modules involved in cell organization, nutrients uptake & utilization, and metabolism. The analysis also identified significant divergences between the two species for modules that orchestrate developmental pathways. CONCLUSIONS: This network sheds light on how gene modules are organized between different species in the context of evolutionary divergence and highlights modules whose structure and gene content can provide important resources for maize gene functional studies with application potential. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-017-1077-4) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5540570 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-55405702017-08-07 Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response Ma, Shisong Ding, Zehong Li, Pinghua BMC Plant Biol Research Article BACKGROUND: The advent of big data in biology offers opportunities while poses challenges to derive biological insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a comprehensive analysis is lacking. RESULTS: We constructed a maize gene co-expression network based on the graphical Gaussian model, using massive RNA-seq data. The network, containing 20,269 genes, assembles into 964 gene modules that function in a variety of plant processes, such as cell organization, the development of inflorescences, ligules and kernels, the uptake and utilization of nutrients (e.g. nitrogen and phosphate), the metabolism of benzoxazionids, oxylipins, flavonoids, and wax, and the response to stresses. Among them, the inflorescences development module is enriched with domestication genes (like ra1, ba1, gt1, tb1, tga1) that control plant architecture and kernel structure, while multiple other modules relate to diverse agronomic traits. Contained within these modules are transcription factors acting as known or potential expression regulators for the genes within the same modules, suggesting them as candidate regulators for related biological processes. A comparison with an established Arabidopsis network revealed conserved gene association patterns for specific modules involved in cell organization, nutrients uptake & utilization, and metabolism. The analysis also identified significant divergences between the two species for modules that orchestrate developmental pathways. CONCLUSIONS: This network sheds light on how gene modules are organized between different species in the context of evolutionary divergence and highlights modules whose structure and gene content can provide important resources for maize gene functional studies with application potential. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-017-1077-4) contains supplementary material, which is available to authorized users. BioMed Central 2017-08-01 /pmc/articles/PMC5540570/ /pubmed/28764653 http://dx.doi.org/10.1186/s12870-017-1077-4 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Ma, Shisong Ding, Zehong Li, Pinghua Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title | Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title_full | Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title_fullStr | Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title_full_unstemmed | Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title_short | Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
title_sort | maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540570/ https://www.ncbi.nlm.nih.gov/pubmed/28764653 http://dx.doi.org/10.1186/s12870-017-1077-4 |
work_keys_str_mv | AT mashisong maizenetworkanalysisrevealedgenemodulesinvolvedindevelopmentnutrientsutilizationmetabolismandstressresponse AT dingzehong maizenetworkanalysisrevealedgenemodulesinvolvedindevelopmentnutrientsutilizationmetabolismandstressresponse AT lipinghua maizenetworkanalysisrevealedgenemodulesinvolvedindevelopmentnutrientsutilizationmetabolismandstressresponse |