Cargando…
Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation
Graphene aerogels (GAs) are three-dimensional (3D) graphene sponges with unique wettability and have demonstrated the potential for reducing contamination from oil spills and chemical accidents. Herein, we report new polyurethane (PU) sponge-reinforced GAs with low surface energy, high sorption capa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540914/ https://www.ncbi.nlm.nih.gov/pubmed/28769065 http://dx.doi.org/10.1038/s41598-017-07583-0 |
Sumario: | Graphene aerogels (GAs) are three-dimensional (3D) graphene sponges with unique wettability and have demonstrated the potential for reducing contamination from oil spills and chemical accidents. Herein, we report new polyurethane (PU) sponge-reinforced GAs with low surface energy, high sorption capacity and excellent recyclability for use as efficient oil sorbents. Spongy graphene aerogels (SGAs) with a hierarchical porous morphology were produced by simply freeze-casting reduced graphene oxide (rGO) to form compacted macroscale sponges. This novel micro-structure benefits from the advantages of embedded graphene and presents reversible large-strain deformation (90%), high compressive strength (63 kpa) and viscoelastic stability. These superior properties, in addition to super-hydrophobicity, endow the aerogels with excellent recyclability without deteriorating the oil absorption performance. Furthermore, SGA has selective and high-volume absorbability (>100%) and can efficiently separate oil from water under continuous pumping action. The excellent absorption performance and robust mechanical properties make this graphene material promising for the large-scale recovery of spilled oil. |
---|