Cargando…
L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin
BACKGROUND: Autotaxin (ATX, NPP-2), originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD). The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC554093/ https://www.ncbi.nlm.nih.gov/pubmed/15737239 http://dx.doi.org/10.1186/1476-511X-4-5 |
Sumario: | BACKGROUND: Autotaxin (ATX, NPP-2), originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD). The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE) activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity. RESULTS: We show that millimolar concentrations of L-histidine inhibit ATX-stimulated but not LPA-stimulated motility in two tumor cell lines, as well as inhibiting enzymatic activities. Inhibition is reversed by 20-fold lower concentrations of zinc salt. L-histidine has no significant effect on the Km of LPLD, but reduces the Vmax by greater than 50%, acting as a non-competitive inhibitor. Several histidine analogs also inhibit the LPLD activity of ATX; however, none has greater potency than L-histidine and all decrease cell viability or adhesion. CONCLUSION: L-histidine inhibition of LPLD is not a simple stoichiometric chelation of metal ions but is more likely a complex interaction with a variety of moieties, including the metal cation, at or near the active site. The inhibitory effect of L-histidine requires all three major functional groups of histidine: the alpha amino group, the alpha carboxyl group, and the metal-binding imidazole side chain. Because of LPA's involvement in pathological processes, regulation of its formation by ATX may give insight into possible novel therapeutic approaches. |
---|