Cargando…
Persistent current in 2D topological superconductors
A junction between two boundaries of a topological superconductor (TSC), mediated by localized edge modes of Majorana fermions, is investigated. The tunneling of fermions across the junction depends on the magnetic flux. It breaks the time-reversal symmetry at the boundary of the sample. The persist...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540975/ https://www.ncbi.nlm.nih.gov/pubmed/28769050 http://dx.doi.org/10.1038/s41598-017-07492-2 |
_version_ | 1783254721164738560 |
---|---|
author | Karnaukhov, Igor N. |
author_facet | Karnaukhov, Igor N. |
author_sort | Karnaukhov, Igor N. |
collection | PubMed |
description | A junction between two boundaries of a topological superconductor (TSC), mediated by localized edge modes of Majorana fermions, is investigated. The tunneling of fermions across the junction depends on the magnetic flux. It breaks the time-reversal symmetry at the boundary of the sample. The persistent current is determined by the emergence of Majorana edge modes. The structure of the edge modes depends on the magnitude of the tunneling amplitude across the junction. It is shown that there are two different regimes, which correspond to strong and weak tunneling of Majorana fermions, distinctive in the persistent current behavior. In a strong tunneling regime, the fermion parity of edge modes is not conserved and the persistent current is a 2π-periodic function of the magnetic flux. When the tunneling is weak the chiral Majorana states, which are propagating along the edges have the same fermion parity. They form a 4π-phase periodic persistent current along the boundaries. The regions in the space of parameters, which correspond to the emergence of 2π- and of 4π-harmonics, are numerically determined. The peculiarities in the persistent current behavior are studied. |
format | Online Article Text |
id | pubmed-5540975 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55409752017-08-07 Persistent current in 2D topological superconductors Karnaukhov, Igor N. Sci Rep Article A junction between two boundaries of a topological superconductor (TSC), mediated by localized edge modes of Majorana fermions, is investigated. The tunneling of fermions across the junction depends on the magnetic flux. It breaks the time-reversal symmetry at the boundary of the sample. The persistent current is determined by the emergence of Majorana edge modes. The structure of the edge modes depends on the magnitude of the tunneling amplitude across the junction. It is shown that there are two different regimes, which correspond to strong and weak tunneling of Majorana fermions, distinctive in the persistent current behavior. In a strong tunneling regime, the fermion parity of edge modes is not conserved and the persistent current is a 2π-periodic function of the magnetic flux. When the tunneling is weak the chiral Majorana states, which are propagating along the edges have the same fermion parity. They form a 4π-phase periodic persistent current along the boundaries. The regions in the space of parameters, which correspond to the emergence of 2π- and of 4π-harmonics, are numerically determined. The peculiarities in the persistent current behavior are studied. Nature Publishing Group UK 2017-08-02 /pmc/articles/PMC5540975/ /pubmed/28769050 http://dx.doi.org/10.1038/s41598-017-07492-2 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Karnaukhov, Igor N. Persistent current in 2D topological superconductors |
title | Persistent current in 2D topological superconductors |
title_full | Persistent current in 2D topological superconductors |
title_fullStr | Persistent current in 2D topological superconductors |
title_full_unstemmed | Persistent current in 2D topological superconductors |
title_short | Persistent current in 2D topological superconductors |
title_sort | persistent current in 2d topological superconductors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540975/ https://www.ncbi.nlm.nih.gov/pubmed/28769050 http://dx.doi.org/10.1038/s41598-017-07492-2 |
work_keys_str_mv | AT karnaukhovigorn persistentcurrentin2dtopologicalsuperconductors |