Cargando…
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
Purpose: Driving fatigue has become one of the important causes of road accidents, there are many researches to analyze driver fatigue. EEG is becoming increasingly useful in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an effective method for automatic detecti...
Autor principal: | Hu, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540979/ https://www.ncbi.nlm.nih.gov/pubmed/28824409 http://dx.doi.org/10.3389/fncom.2017.00072 |
Ejemplares similares
-
Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection
por: Al-Hadeethi, Hanan, et al.
Publicado: (2021) -
Chagas Parasite Detection in Blood Images Using AdaBoost
por: Uc-Cetina, Víctor, et al.
Publicado: (2015) -
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Clairvoyant: AdaBoost with Cost-Enabled Cost-Sensitive Classifier for Customer Churn Prediction
por: Thakkar, Hiren Kumar, et al.
Publicado: (2022) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022)