Cargando…
Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells
PURPOSE: To investigate the effects of anti-vascular endothelial growth factor (VEGF) antibody on the survival of retinal ganglion cell (RGC)-5 cells differentiated with staurosporine under oxidative stress. METHODS: We used real-time polymerase chain reaction and Western blot to confirm the express...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Ophthalmological Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540992/ https://www.ncbi.nlm.nih.gov/pubmed/28752700 http://dx.doi.org/10.3341/kjo.2017.0054 |
_version_ | 1783254725238456320 |
---|---|
author | Lee, Ji Min Bae, Hyoung Won Lee, Sang Yeop Seong, Gong Je Kim, Chan Yun |
author_facet | Lee, Ji Min Bae, Hyoung Won Lee, Sang Yeop Seong, Gong Je Kim, Chan Yun |
author_sort | Lee, Ji Min |
collection | PubMed |
description | PURPOSE: To investigate the effects of anti-vascular endothelial growth factor (VEGF) antibody on the survival of retinal ganglion cell (RGC)-5 cells differentiated with staurosporine under oxidative stress. METHODS: We used real-time polymerase chain reaction and Western blot to confirm the expression of VEGF, VEGF receptor (VEGFR)-1 and VEGFR-2 in RGC-5 cells differentiated with staurosporine for 6 hours. The differentiated RGC-5 cells were treated with 800 µM hydrogen peroxide (H(2)O(2)) for 24 hours to induce oxidative stress. Then, the survival rate of RGC-5 was confirmed by lactate dehydrogenase assay at each concentration (0, 0.01, 0.1, and 1 mg) using bevacizumab as the anti-VEGF antibody. The expression of VEGF, VEGFR-1, and VEGFR-2 was confirmed using real-time polymerase chain reaction. RESULTS: VEGF, VEGFR-1, and VEGFR-2 were all expressed in differentiated RGC-5 cells. When RGC-5 cells were simultaneously treated with bevacizumab and 800 µM H(2)O(2), survival of RGC-5 decreased with bevacizumab concentration. VEGF expression in RGC-5 cells increased with increasing concentration of bevacizumab. Similar patterns were observed for VEGFR-1 and VEGFR-2, but the degree of increase was smaller than that for VEGF. CONCLUSIONS: When bevacizumab was administered to differentiated RGC-5 cells, the cell damage caused by oxidative stress increased. Therefore, given these in vitro study results, caution should be exercised with bevacizumab treatment. |
format | Online Article Text |
id | pubmed-5540992 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Korean Ophthalmological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-55409922017-08-03 Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells Lee, Ji Min Bae, Hyoung Won Lee, Sang Yeop Seong, Gong Je Kim, Chan Yun Korean J Ophthalmol Original Article PURPOSE: To investigate the effects of anti-vascular endothelial growth factor (VEGF) antibody on the survival of retinal ganglion cell (RGC)-5 cells differentiated with staurosporine under oxidative stress. METHODS: We used real-time polymerase chain reaction and Western blot to confirm the expression of VEGF, VEGF receptor (VEGFR)-1 and VEGFR-2 in RGC-5 cells differentiated with staurosporine for 6 hours. The differentiated RGC-5 cells were treated with 800 µM hydrogen peroxide (H(2)O(2)) for 24 hours to induce oxidative stress. Then, the survival rate of RGC-5 was confirmed by lactate dehydrogenase assay at each concentration (0, 0.01, 0.1, and 1 mg) using bevacizumab as the anti-VEGF antibody. The expression of VEGF, VEGFR-1, and VEGFR-2 was confirmed using real-time polymerase chain reaction. RESULTS: VEGF, VEGFR-1, and VEGFR-2 were all expressed in differentiated RGC-5 cells. When RGC-5 cells were simultaneously treated with bevacizumab and 800 µM H(2)O(2), survival of RGC-5 decreased with bevacizumab concentration. VEGF expression in RGC-5 cells increased with increasing concentration of bevacizumab. Similar patterns were observed for VEGFR-1 and VEGFR-2, but the degree of increase was smaller than that for VEGF. CONCLUSIONS: When bevacizumab was administered to differentiated RGC-5 cells, the cell damage caused by oxidative stress increased. Therefore, given these in vitro study results, caution should be exercised with bevacizumab treatment. The Korean Ophthalmological Society 2017-08 2017-07-11 /pmc/articles/PMC5540992/ /pubmed/28752700 http://dx.doi.org/10.3341/kjo.2017.0054 Text en © 2017 The Korean Ophthalmological Society http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Lee, Ji Min Bae, Hyoung Won Lee, Sang Yeop Seong, Gong Je Kim, Chan Yun Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title | Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title_full | Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title_fullStr | Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title_full_unstemmed | Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title_short | Effect of Anti-vascular Endothelial Growth Factor Antibody on the Survival of Cultured Retinal Ganglion Cells |
title_sort | effect of anti-vascular endothelial growth factor antibody on the survival of cultured retinal ganglion cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540992/ https://www.ncbi.nlm.nih.gov/pubmed/28752700 http://dx.doi.org/10.3341/kjo.2017.0054 |
work_keys_str_mv | AT leejimin effectofantivascularendothelialgrowthfactorantibodyonthesurvivalofculturedretinalganglioncells AT baehyoungwon effectofantivascularendothelialgrowthfactorantibodyonthesurvivalofculturedretinalganglioncells AT leesangyeop effectofantivascularendothelialgrowthfactorantibodyonthesurvivalofculturedretinalganglioncells AT seonggongje effectofantivascularendothelialgrowthfactorantibodyonthesurvivalofculturedretinalganglioncells AT kimchanyun effectofantivascularendothelialgrowthfactorantibodyonthesurvivalofculturedretinalganglioncells |