Cargando…
Machine learning landscapes and predictions for patient outcomes
The theory and computational tools developed to interpret and explore energy landscapes in molecular science are applied to the landscapes defined by local minima for neural networks. These machine learning landscapes correspond to fits of training data, where the inputs are vital signs and laborato...
Autores principales: | Das, Ritankar, Wales, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541539/ https://www.ncbi.nlm.nih.gov/pubmed/28791144 http://dx.doi.org/10.1098/rsos.170175 |
Ejemplares similares
-
Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach
por: Desautels, Thomas, et al.
Publicado: (2017) -
Energy landscapes of planar colloidal clusters
por: Morgan, John W. R., et al.
Publicado: (2014) -
Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach
por: Desautels, Thomas, et al.
Publicado: (2016) -
Reducing patient mortality, length of stay and readmissions through machine learning-based sepsis prediction in the emergency department, intensive care unit and hospital floor units
por: McCoy, Andrea, et al.
Publicado: (2017) -
Predicting pulmonary embolism among hospitalized patients with machine learning algorithms
por: Ryan, Logan, et al.
Publicado: (2022)