Cargando…

Semantic word category processing in semantic dementia and posterior cortical atrophy

There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Shebani, Zubaida, Patterson, Karalyn, Nestor, Peter J., Diaz-de-Grenu, Lara Z., Dawson, Kate, Pulvermüller, Friedemann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Masson 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542041/
https://www.ncbi.nlm.nih.gov/pubmed/28624681
http://dx.doi.org/10.1016/j.cortex.2017.04.016
Descripción
Sumario:There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words.