Cargando…

MicroRNAs in the miR-17 and miR-15 families are downregulated in chronic kidney disease with hypertension

BACKGROUND: In older adults (aged 70–74 years), African-Americans have 4-fold higher risk of developing hypertension-attributed end-stage renal disease (ESRD) than European-Americans. A hypothesized mechanism linking hypertension and progressive chronic kidney disease (CKD) is the innate immune resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Nandakumar, Priyanka, Tin, Adrienne, Grove, Megan L., Ma, Jianzhong, Boerwinkle, Eric, Coresh, Josef, Chakravarti, Aravinda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5542606/
https://www.ncbi.nlm.nih.gov/pubmed/28771472
http://dx.doi.org/10.1371/journal.pone.0176734
Descripción
Sumario:BACKGROUND: In older adults (aged 70–74 years), African-Americans have 4-fold higher risk of developing hypertension-attributed end-stage renal disease (ESRD) than European-Americans. A hypothesized mechanism linking hypertension and progressive chronic kidney disease (CKD) is the innate immune response and inflammation. Persons with CKD are also more susceptible to infection. Gene expression in peripheral blood can provide a view of the innate immune activation profile. We aimed to identify differentially expressed genes, microRNAs, and pathways in peripheral blood between cases with CKD and high blood pressure under hypertension treatment versus controls without CKD and with controlled blood pressure in African Americans. METHODS: Case and control pairs (N = 15x2) were selected from those without diabetes and were matched for age, sex, body mass index, APOL1 risk allele count, and hypertension medication use. High blood pressure under hypertension treatment was defined as hypertension medication use and systolic blood pressure (SBP) ≥ 145 mmHg. CKD was defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m(2). Cases were selected from those with CKD and high blood pressure under hypertension treatment, and controls were selected from those without CKD (eGFR: 75–120 mL/min/1.73m(2) and urine albumin-to-creatinine ratio < 30mg/g) and with blood pressure controlled by hypertension medication use (SBP < 135 mmHg and D(diastolic)BP < 90 mm Hg). We perform RNA sequencing of mRNA and microRNA and conducted differential expression and co-expression network analysis. RESULTS: Of 347 miRNAs included in the analysis, 14 were significantly associated with case status (Benjamini-Hochberg adjusted p-value [BH p] < 0.05). Of these, ten were downregulated in cases: three of each belong to the miR-17 and miR-15 families. In co-expression network analysis of miRNA, one module, which included 13 of the 14 significant miRNAs, had significant association with case status. Of the 14,488 genes and 41,739 transcripts included in the analysis, none had significant association with case status. Gene co-expression network analyses did not yield any significant associations for mRNA. CONCLUSION: We have identified 14 differentially expressed miRNAs in the peripheral blood of CKD cases with high blood pressure under hypertension treatment as compared to appropriate controls. Most of the significant miRNAs were downregulated and have critical roles in immune cell functions. Future studies are needed to replicate our findings and determine whether the downregulation of these miRNAs in immune cells may influence CKD progression or complications.