Cargando…

Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip

Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy...

Descripción completa

Detalles Bibliográficos
Autores principales: Kehayias, P., Jarmola, A., Mosavian, N., Fescenko, I., Benito, F. M., Laraoui, A., Smits, J., Bougas, L., Budker, D., Neumann, A., Brueck, S. R. J., Acosta, V. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543112/
https://www.ncbi.nlm.nih.gov/pubmed/28775280
http://dx.doi.org/10.1038/s41467-017-00266-4
Descripción
Sumario:Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform (1)H and (19)F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10(12 19)F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration.