Cargando…

Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip

Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy...

Descripción completa

Detalles Bibliográficos
Autores principales: Kehayias, P., Jarmola, A., Mosavian, N., Fescenko, I., Benito, F. M., Laraoui, A., Smits, J., Bougas, L., Budker, D., Neumann, A., Brueck, S. R. J., Acosta, V. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543112/
https://www.ncbi.nlm.nih.gov/pubmed/28775280
http://dx.doi.org/10.1038/s41467-017-00266-4
_version_ 1783255091911852032
author Kehayias, P.
Jarmola, A.
Mosavian, N.
Fescenko, I.
Benito, F. M.
Laraoui, A.
Smits, J.
Bougas, L.
Budker, D.
Neumann, A.
Brueck, S. R. J.
Acosta, V. M.
author_facet Kehayias, P.
Jarmola, A.
Mosavian, N.
Fescenko, I.
Benito, F. M.
Laraoui, A.
Smits, J.
Bougas, L.
Budker, D.
Neumann, A.
Brueck, S. R. J.
Acosta, V. M.
author_sort Kehayias, P.
collection PubMed
description Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform (1)H and (19)F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10(12 19)F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration.
format Online
Article
Text
id pubmed-5543112
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55431122017-08-09 Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip Kehayias, P. Jarmola, A. Mosavian, N. Fescenko, I. Benito, F. M. Laraoui, A. Smits, J. Bougas, L. Budker, D. Neumann, A. Brueck, S. R. J. Acosta, V. M. Nat Commun Article Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform (1)H and (19)F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10(12 19)F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration. Nature Publishing Group UK 2017-08-04 /pmc/articles/PMC5543112/ /pubmed/28775280 http://dx.doi.org/10.1038/s41467-017-00266-4 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Kehayias, P.
Jarmola, A.
Mosavian, N.
Fescenko, I.
Benito, F. M.
Laraoui, A.
Smits, J.
Bougas, L.
Budker, D.
Neumann, A.
Brueck, S. R. J.
Acosta, V. M.
Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title_full Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title_fullStr Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title_full_unstemmed Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title_short Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
title_sort solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543112/
https://www.ncbi.nlm.nih.gov/pubmed/28775280
http://dx.doi.org/10.1038/s41467-017-00266-4
work_keys_str_mv AT kehayiasp solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT jarmolaa solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT mosaviann solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT fescenkoi solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT benitofm solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT laraouia solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT smitsj solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT bougasl solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT budkerd solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT neumanna solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT bruecksrj solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip
AT acostavm solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip