Cargando…
Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip
Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543112/ https://www.ncbi.nlm.nih.gov/pubmed/28775280 http://dx.doi.org/10.1038/s41467-017-00266-4 |
_version_ | 1783255091911852032 |
---|---|
author | Kehayias, P. Jarmola, A. Mosavian, N. Fescenko, I. Benito, F. M. Laraoui, A. Smits, J. Bougas, L. Budker, D. Neumann, A. Brueck, S. R. J. Acosta, V. M. |
author_facet | Kehayias, P. Jarmola, A. Mosavian, N. Fescenko, I. Benito, F. M. Laraoui, A. Smits, J. Bougas, L. Budker, D. Neumann, A. Brueck, S. R. J. Acosta, V. M. |
author_sort | Kehayias, P. |
collection | PubMed |
description | Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform (1)H and (19)F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10(12 19)F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration. |
format | Online Article Text |
id | pubmed-5543112 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55431122017-08-09 Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip Kehayias, P. Jarmola, A. Mosavian, N. Fescenko, I. Benito, F. M. Laraoui, A. Smits, J. Bougas, L. Budker, D. Neumann, A. Brueck, S. R. J. Acosta, V. M. Nat Commun Article Sensors using nitrogen-vacancy centers in diamond are a promising tool for small-volume nuclear magnetic resonance (NMR) spectroscopy, but the limited sensitivity remains a challenge. Here we show nearly two orders of magnitude improvement in concentration sensitivity over previous nitrogen-vacancy and picoliter NMR studies. We demonstrate NMR spectroscopy of picoliter-volume solutions using a nanostructured diamond chip with dense, high-aspect-ratio nanogratings, enhancing the surface area by 15 times. The nanograting sidewalls are doped with nitrogen-vacancies located a few nanometers from the diamond surface to detect the NMR spectrum of roughly 1 pl of fluid lying within adjacent nanograting grooves. We perform (1)H and (19)F nuclear magnetic resonance spectroscopy at room temperature in magnetic fields below 50 mT. Using a solution of CsF in glycerol, we determine that 4 ± 2 × 10(12 19)F spins in a 1 pl volume can be detected with a signal-to-noise ratio of 3 in 1 s of integration. Nature Publishing Group UK 2017-08-04 /pmc/articles/PMC5543112/ /pubmed/28775280 http://dx.doi.org/10.1038/s41467-017-00266-4 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Kehayias, P. Jarmola, A. Mosavian, N. Fescenko, I. Benito, F. M. Laraoui, A. Smits, J. Bougas, L. Budker, D. Neumann, A. Brueck, S. R. J. Acosta, V. M. Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title | Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title_full | Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title_fullStr | Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title_full_unstemmed | Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title_short | Solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
title_sort | solution nuclear magnetic resonance spectroscopy on a nanostructured diamond chip |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543112/ https://www.ncbi.nlm.nih.gov/pubmed/28775280 http://dx.doi.org/10.1038/s41467-017-00266-4 |
work_keys_str_mv | AT kehayiasp solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT jarmolaa solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT mosaviann solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT fescenkoi solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT benitofm solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT laraouia solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT smitsj solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT bougasl solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT budkerd solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT neumanna solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT bruecksrj solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip AT acostavm solutionnuclearmagneticresonancespectroscopyonananostructureddiamondchip |