Cargando…

A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications

We present a simple text mining method that is easy to implement, requires minimal data collection and preparation, and is easy to use for proposing ranked associations between a list of target terms and a key phrase. We call this method KinderMiner, and apply it to two biomedical applications. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuusisto, Finn, Steill, John, Kuang, Zhaobin, Thomson, James, Page, David, Stewart, Ron
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Informatics Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543342/
https://www.ncbi.nlm.nih.gov/pubmed/28815126
_version_ 1783255131233452032
author Kuusisto, Finn
Steill, John
Kuang, Zhaobin
Thomson, James
Page, David
Stewart, Ron
author_facet Kuusisto, Finn
Steill, John
Kuang, Zhaobin
Thomson, James
Page, David
Stewart, Ron
author_sort Kuusisto, Finn
collection PubMed
description We present a simple text mining method that is easy to implement, requires minimal data collection and preparation, and is easy to use for proposing ranked associations between a list of target terms and a key phrase. We call this method KinderMiner, and apply it to two biomedical applications. The first application is to identify relevant transcription factors for cell reprogramming, and the second is to identify potential drugs for investigation in drug repositioning. We compare the results from our algorithm to existing data and state-of-the-art algorithms, demonstrating compelling results for both application areas. While we apply the algorithm here for biomedical applications, we argue that the method is generalizable to any available corpus of sufficient size.
format Online
Article
Text
id pubmed-5543342
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Medical Informatics Association
record_format MEDLINE/PubMed
spelling pubmed-55433422017-08-16 A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications Kuusisto, Finn Steill, John Kuang, Zhaobin Thomson, James Page, David Stewart, Ron AMIA Jt Summits Transl Sci Proc Articles We present a simple text mining method that is easy to implement, requires minimal data collection and preparation, and is easy to use for proposing ranked associations between a list of target terms and a key phrase. We call this method KinderMiner, and apply it to two biomedical applications. The first application is to identify relevant transcription factors for cell reprogramming, and the second is to identify potential drugs for investigation in drug repositioning. We compare the results from our algorithm to existing data and state-of-the-art algorithms, demonstrating compelling results for both application areas. While we apply the algorithm here for biomedical applications, we argue that the method is generalizable to any available corpus of sufficient size. American Medical Informatics Association 2017-07-26 /pmc/articles/PMC5543342/ /pubmed/28815126 Text en ©2017 AMIA - All rights reserved. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose
spellingShingle Articles
Kuusisto, Finn
Steill, John
Kuang, Zhaobin
Thomson, James
Page, David
Stewart, Ron
A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title_full A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title_fullStr A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title_full_unstemmed A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title_short A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications
title_sort simple text mining approach for ranking pairwise associations in biomedical applications
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543342/
https://www.ncbi.nlm.nih.gov/pubmed/28815126
work_keys_str_mv AT kuusistofinn asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT steilljohn asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT kuangzhaobin asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT thomsonjames asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT pagedavid asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT stewartron asimpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT kuusistofinn simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT steilljohn simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT kuangzhaobin simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT thomsonjames simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT pagedavid simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications
AT stewartron simpletextminingapproachforrankingpairwiseassociationsinbiomedicalapplications