Cargando…
Active Deep Learning-Based Annotation of Electroencephalography Reports for Cohort Identification
The annotation of a large corpus of Electroencephalography (EEG) reports is a crucial step in the development of an EEG-specific patient cohort retrieval system. The annotation of multiple types of EEG-specific medical concepts, along with their polarity and modality, is challenging, especially when...
Autores principales: | Maldonado, Ramon, Goodwin, Travis R, Harabagiu, Sanda M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543351/ https://www.ncbi.nlm.nih.gov/pubmed/28815135 |
Ejemplares similares
-
Memory-Augmented Active Deep Learning for Identifying Relations Between Distant Medical Concepts in Electroencephalography Reports
por: Maldonado, Ramon, et al.
Publicado: (2018) -
Deep Learning from EEG Reports for Inferring Underspecified Information
por: Goodwin, Travis R., et al.
Publicado: (2017) -
Learning relevance models for patient cohort retrieval
por: Goodwin, Travis R, et al.
Publicado: (2018) -
Automatically Linking Registered Clinical Trials to their Published Results with Deep Highway Networks
por: Goodwin, Travis R., et al.
Publicado: (2018) -
A Probabilistic Reasoning Method for Predicting the Progression of Clinical Findings from Electronic Medical Records
por: Goodwin, Travis, et al.
Publicado: (2015)