Cargando…
Spatio-temporal Analysis for New York State SPARCS Data
Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges...
Autores principales: | Chen, Xin, Wang, Yu, Schoenfeld, Elinor, Saltz, Mary, Saltz, Joel, Wang, Fusheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543354/ https://www.ncbi.nlm.nih.gov/pubmed/28815148 |
Ejemplares similares
-
Serverless OpenHealth at data commons scale—traversing the 20 million patient records of New York’s SPARCS dataset in real-time
por: Almeida, Jonas S., et al.
Publicado: (2019) -
A large-scale retrospective study of opioid poisoning in New York State with implications for targeted interventions
por: Chen, Xin, et al.
Publicado: (2021) -
A Large-Scale Observational Study on the Temporal Trends and Risk Factors of Opioid Overdose: Real-World Evidence for Better Opioids
por: Deng, Jianyuan, et al.
Publicado: (2021) -
Detecting Miscoded Diabetes Diagnosis Codes in Electronic Health Records for Quality Improvement: Temporal Deep Learning Approach
por: Rashidian, Sina, et al.
Publicado: (2020) -
Spatio-temporal patterns of gun violence in Syracuse, New York 2009-2015
por: Larsen, David A., et al.
Publicado: (2017)