Cargando…

Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis

The use of multiple data sources has been preferred in the surveillance of adverse drug events due to shortcomings of using only a single source. In this study, we proposed a framework where the ADEs associated with interested drugs are systematically discovered from the FDA’s Adverse Event Reportin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Liwei, Rastegar-Mojarad, Majid, Liu, Sijia, Zhang, Huaji, Liu, Hongfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Medical Informatics Association 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543355/
https://www.ncbi.nlm.nih.gov/pubmed/28815115
Descripción
Sumario:The use of multiple data sources has been preferred in the surveillance of adverse drug events due to shortcomings of using only a single source. In this study, we proposed a framework where the ADEs associated with interested drugs are systematically discovered from the FDA’s Adverse Event Reporting System (AERS), and then validated through mining unstructured clinical notes from Electronic Medical Records (EMRs). This framework has two features. First, a higher priority was given to clinical practice during signal detection and validation. Second, the normalization by NLP facilitated the interoperation between AERS-DM and the EMR. To demonstrate this methodology, we investigated potential ADEs associated with drugs (class level) for rheumatoid arthritis (RA) patients. The results demonstrated the feasibility and sufficient accuracy of the framework. The framework can serve as the interface between the informatics domain and the medical domain to facilitate ADE discovery.