Cargando…
Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis
The use of multiple data sources has been preferred in the surveillance of adverse drug events due to shortcomings of using only a single source. In this study, we proposed a framework where the ADEs associated with interested drugs are systematically discovered from the FDA’s Adverse Event Reportin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543355/ https://www.ncbi.nlm.nih.gov/pubmed/28815115 |
_version_ | 1783255134203019264 |
---|---|
author | Wang, Liwei Rastegar-Mojarad, Majid Liu, Sijia Zhang, Huaji Liu, Hongfang |
author_facet | Wang, Liwei Rastegar-Mojarad, Majid Liu, Sijia Zhang, Huaji Liu, Hongfang |
author_sort | Wang, Liwei |
collection | PubMed |
description | The use of multiple data sources has been preferred in the surveillance of adverse drug events due to shortcomings of using only a single source. In this study, we proposed a framework where the ADEs associated with interested drugs are systematically discovered from the FDA’s Adverse Event Reporting System (AERS), and then validated through mining unstructured clinical notes from Electronic Medical Records (EMRs). This framework has two features. First, a higher priority was given to clinical practice during signal detection and validation. Second, the normalization by NLP facilitated the interoperation between AERS-DM and the EMR. To demonstrate this methodology, we investigated potential ADEs associated with drugs (class level) for rheumatoid arthritis (RA) patients. The results demonstrated the feasibility and sufficient accuracy of the framework. The framework can serve as the interface between the informatics domain and the medical domain to facilitate ADE discovery. |
format | Online Article Text |
id | pubmed-5543355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Medical Informatics Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-55433552017-08-16 Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis Wang, Liwei Rastegar-Mojarad, Majid Liu, Sijia Zhang, Huaji Liu, Hongfang AMIA Jt Summits Transl Sci Proc Articles The use of multiple data sources has been preferred in the surveillance of adverse drug events due to shortcomings of using only a single source. In this study, we proposed a framework where the ADEs associated with interested drugs are systematically discovered from the FDA’s Adverse Event Reporting System (AERS), and then validated through mining unstructured clinical notes from Electronic Medical Records (EMRs). This framework has two features. First, a higher priority was given to clinical practice during signal detection and validation. Second, the normalization by NLP facilitated the interoperation between AERS-DM and the EMR. To demonstrate this methodology, we investigated potential ADEs associated with drugs (class level) for rheumatoid arthritis (RA) patients. The results demonstrated the feasibility and sufficient accuracy of the framework. The framework can serve as the interface between the informatics domain and the medical domain to facilitate ADE discovery. American Medical Informatics Association 2017-07-26 /pmc/articles/PMC5543355/ /pubmed/28815115 Text en ©2017 AMIA - All rights reserved. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose |
spellingShingle | Articles Wang, Liwei Rastegar-Mojarad, Majid Liu, Sijia Zhang, Huaji Liu, Hongfang Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title | Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title_full | Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title_fullStr | Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title_full_unstemmed | Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title_short | Discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional DMARDs and biologics for rheumatoid arthritis |
title_sort | discovering adverse drug events combining spontaneous reports with electronic medical records: a case study of conventional dmards and biologics for rheumatoid arthritis |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543355/ https://www.ncbi.nlm.nih.gov/pubmed/28815115 |
work_keys_str_mv | AT wangliwei discoveringadversedrugeventscombiningspontaneousreportswithelectronicmedicalrecordsacasestudyofconventionaldmardsandbiologicsforrheumatoidarthritis AT rastegarmojaradmajid discoveringadversedrugeventscombiningspontaneousreportswithelectronicmedicalrecordsacasestudyofconventionaldmardsandbiologicsforrheumatoidarthritis AT liusijia discoveringadversedrugeventscombiningspontaneousreportswithelectronicmedicalrecordsacasestudyofconventionaldmardsandbiologicsforrheumatoidarthritis AT zhanghuaji discoveringadversedrugeventscombiningspontaneousreportswithelectronicmedicalrecordsacasestudyofconventionaldmardsandbiologicsforrheumatoidarthritis AT liuhongfang discoveringadversedrugeventscombiningspontaneousreportswithelectronicmedicalrecordsacasestudyofconventionaldmardsandbiologicsforrheumatoidarthritis |