Cargando…
SDT: A Tree Method for Detecting Patient Subgroups with Personalized Risk Factors
Eradicating health disparity is a new focus for precision medicine research. Identifying patient subgroups is an effective approach to customized treatments for maximizing efficiency in precision medicine. Some features may be important risk factors for specific patient subgroups but not necessarily...
Autores principales: | Li, Xiangrui, Zhu, Dongxiao, Dong, Ming, Zafar Nezhad, Milad, Janke, Alexander, Levy, Phillip D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543368/ https://www.ncbi.nlm.nih.gov/pubmed/28815129 |
Ejemplares similares
-
Diabetic Retinal and Choroidal Edema in SDT Rats
por: Toyoda, Fumihiko, et al.
Publicado: (2016) -
OrCAD SDT/III : diseño de esquemas electrónicos por ordenador /
por: García Guillén, Pedro
Publicado: (1991) -
Leveraging auxiliary measures: a deep multi-task neural network for predictive modeling in clinical research
por: Li, Xiangrui, et al.
Publicado: (2018) -
Bone morphological analyses in Spontaneously Diabetic Torii (SDT) fatty
rats
por: OHTA, Takeshi, et al.
Publicado: (2015) -
Alleviating the concerns with the SDT approach to reasoning: reply to Singmann and Kellen (2014)
por: Trippas, Dries, et al.
Publicado: (2015)