Cargando…
Predicting intervention onset in the ICU with switching state space models
The impact of many intensive care unit interventions has not been fully quantified, especially in heterogeneous patient populations. We train unsupervised switching state autoregressive models on vital signs from the public MIMIC-III database to capture patient movement between physiological states....
Autores principales: | Ghassemi, Marzyeh, Wu, Mike, Hughes, Michael C., Szolovits, Peter, Doshi-Velez, Finale |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543372/ https://www.ncbi.nlm.nih.gov/pubmed/28815112 |
Ejemplares similares
-
An interpretable RL framework for pre-deployment modeling in ICU hypotension management
por: Zhang, Kristine, et al.
Publicado: (2022) -
Generalization in Clinical Prediction Models: The Blessing and Curse of Measurement Indicator Variables
por: Futoma, Joseph, et al.
Publicado: (2021) -
Predicting treatment dropout after antidepressant initiation
por: Pradier, Melanie F., et al.
Publicado: (2020) -
Assessment of a Prediction Model for Antidepressant Treatment Stability Using Supervised Topic Models
por: Hughes, Michael C., et al.
Publicado: (2020) -
Combining Kernel and Model Based Learning for HIV Therapy Selection
por: Parbhoo, Sonali, et al.
Publicado: (2017)