Cargando…
Ground Truth Creation for Complex Clinical NLP Tasks – an Iterative Vetting Approach and Lessons Learned
Natural language processing (NLP) holds the promise of effectively analyzing patient record data to reduce cognitive load on physicians and clinicians in patient care, clinical research, and hospital operations management. A critical need in developing such methods is the “ground truth” dataset need...
Autores principales: | Liang, Jennifer J., Tsou, Ching-Huei, Devarakonda, Murthy V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543376/ https://www.ncbi.nlm.nih.gov/pubmed/28815130 |
Ejemplares similares
-
Identification of Semantically Similar Sentences in Clinical Notes: Iterative Intermediate Training Using Multi-Task Learning
por: Mahajan, Diwakar, et al.
Publicado: (2020) -
Ground Truth
por: Garrity, George M.
Publicado: (2009) -
Tryggo: Old norse for truth: The real truth about ground truth: New insights into the challenges of generating ground truth maps for WSI CAD algorithm evaluation
por: Hipp, Jason D., et al.
Publicado: (2012) -
BioNLP Shared Task - The Bacteria Track
por: Bossy, Robert, et al.
Publicado: (2012) -
Covid-19: 10 lessons from young farm vets
Publicado: (2020)