Cargando…
Enabling Comprehension of Patient Subgroups and Characteristics in Large Bipartite Networks: Implications for Precision Medicine
A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities or genes) with the goal of designing more targeted interventions. While network visualization methods such as Fruchterman-Reingold have been used to successfully identify such pa...
Autores principales: | Bhavnani, Suresh K., Chen, Tianlong, Ayyaswamy, Archana, Visweswaran, Shyam, Bellala, Gowtham, Rohit, Divekar, Kevin E., Bassler |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Informatics Association
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543384/ https://www.ncbi.nlm.nih.gov/pubmed/28815099 |
Ejemplares similares
-
Heterogeneity within and across Pediatric Pulmonary Infections: From Bipartite Networks to At-Risk Subphenotypes
por: Bhavnani, Suresh K., et al.
Publicado: (2014) -
The role of complementary bipartite visual analytical representations in the analysis of SNPs: a case study in ancestral informative markers
por: Bhavnani, Suresh K, et al.
Publicado: (2012) -
How Comorbidities Co-Occur in Readmitted Hip Fracture Patients: From Bipartite Networks to Insights for Post-Discharge Planning
por: Bhavnani, Suresh K., et al.
Publicado: (2015) -
How Cytokines Co-occur across Rickettsioses Patients: From Bipartite Visual Analytics to Mechanistic Inferences of a Cytokine Storm
por: Bhavnani, Suresh K., et al.
Publicado: (2013) -
How High-Risk Comorbidities Co-Occur in Readmitted Patients With Hip Fracture: Big Data Visual Analytical Approach
por: Bhavnani, Suresh K, et al.
Publicado: (2020)