Cargando…
Parallel multiple instance learning for extremely large histopathology image analysis
BACKGROUND: Histopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or...
Autores principales: | Xu, Yan, Li, Yeshu, Shen, Zhengyang, Wu, Ziwei, Gao, Teng, Fan, Yubo, Lai, Maode, Chang, Eric I-Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543478/ https://www.ncbi.nlm.nih.gov/pubmed/28774262 http://dx.doi.org/10.1186/s12859-017-1768-8 |
Ejemplares similares
-
Histopathologic brain age estimation via multiple instance learning
por: Marx, Gabriel A., et al.
Publicado: (2023) -
A Novel Multiple Instance Learning Method Based on Extreme Learning Machine
por: Wang, Jie, et al.
Publicado: (2015) -
Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images
por: Sandarenu, Piumi, et al.
Publicado: (2022) -
HistoMIL: A Python package for training multiple instance learning models on histopathology slides
por: Pan, Shi, et al.
Publicado: (2023) -
Multiple instance learning of Calmodulin binding sites
por: Minhas, Fayyaz ul Amir Afsar, et al.
Publicado: (2012)