Cargando…
HAPRAP: a haplotype-based iterative method for statistical fine mapping using GWAS summary statistics
MOTIVATION: Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients ([Fo...
Autores principales: | Zheng, Jie, Rodriguez, Santiago, Laurin, Charles, Baird, Denis, Trela-Larsen, Lea, Erzurumluoglu, Mesut A, Zheng, Yi, White, Jon, Giambartolomei, Claudia, Zabaneh, Delilah, Morris, Richard, Kumari, Meena, Casas, Juan P, Hingorani, Aroon D, Evans, David M, Gaunt, Tom R, Day, Ian N M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544112/ https://www.ncbi.nlm.nih.gov/pubmed/27591082 http://dx.doi.org/10.1093/bioinformatics/btw565 |
Ejemplares similares
-
Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics
por: Giambartolomei, Claudia, et al.
Publicado: (2014) -
Views on GWAS statistical analysis
por: Cao, Xiaowen, et al.
Publicado: (2020) -
The variant call format provides efficient and robust storage of GWAS summary statistics
por: Lyon, Matthew S., et al.
Publicado: (2021) -
iterClust: a statistical framework for iterative clustering analysis
por: Ding, Hongxu, et al.
Publicado: (2018) -
Hope for GWAS: Relevant Risk Genes Uncovered from GWAS Statistical Noise
por: Correia, Catarina, et al.
Publicado: (2014)