Cargando…

Direct transfer of classical non-separable states into hybrid entangled two photon states

Hybrid entangled states, having entanglement between different degrees-of-freedom (DoF) of a particle pair, are of great interest for quantum information science and communication protocols. Among different DoFs, the hybrid entangled states encoded with polarization and orbital angular momentum (OAM...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabir, M. V., Apurv Chaitanya, N., Mathew, Manoj, Samanta, G. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5544695/
https://www.ncbi.nlm.nih.gov/pubmed/28779165
http://dx.doi.org/10.1038/s41598-017-07318-1
Descripción
Sumario:Hybrid entangled states, having entanglement between different degrees-of-freedom (DoF) of a particle pair, are of great interest for quantum information science and communication protocols. Among different DoFs, the hybrid entangled states encoded with polarization and orbital angular momentum (OAM) allow the generation of qubit-qudit entangled states, macroscopic entanglement with very high quanta of OAM and improvement in angular resolution in remote sensing. Till date, such hybrid entangled states are generated by using a high-fidelity polarization entangled states and subsequent imprinting of chosen amount of OAM using suitable mode converters such as spatial light modulator in complicated experimental schemes. Given that the entangled sources have feeble number of photons, loss of photons during imprinting of OAM using diffractive optical elements limits the use of such hybrid states for practical applications. Here we report, on a simple generic experimental scheme to generate hybrid entangled states in polarization and OAM through direct transfer of classical non-separable states of the pump beam in parametric down conversion process. As a proof of principle, using local non-separable pump states of OAM mode l = 3, we have produced quantum hybrid entangled states with entanglement witness parameter of ~1.25 ± 0.03 violating by 8 standard deviation.