Cargando…
Quantifying sources of bias in longitudinal data linkage studies of child abuse and neglect: measuring impact of outcome specification, linkage error, and partial cohort follow-up
BACKGROUND: Health informatics projects combining statewide birth populations with child welfare records have emerged as a valuable approach to conducting longitudinal research of child maltreatment. The potential bias resulting from linkage misspecification, partial cohort follow-up, and outcome mi...
Autores principales: | Parrish, Jared W., Shanahan, Meghan E., Schnitzer, Patricia G., Lanier, Paul, Daniels, Julie L., Marshall, Stephen W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545181/ https://www.ncbi.nlm.nih.gov/pubmed/28762156 http://dx.doi.org/10.1186/s40621-017-0119-6 |
Ejemplares similares
-
Reflections on modern methods: linkage error bias
por: Doidge, James C, et al.
Publicado: (2019) -
Corrigendum to: Reflections on modern methods: linkage error bias
por: Doidge, James C, et al.
Publicado: (2020) -
Business datasets and record linkage: Correlates of linkage and estimating risks of non-linkage biases
por: Moore, Jamie, et al.
Publicado: (2017) -
Evaluating bias due to data linkage error in electronic healthcare records
por: Harron, Katie, et al.
Publicado: (2014) -
Prevalence of Injuries Among Medicaid Enrolled Infants Prior to Child Abuse and Neglect
por: Shanahan, Meghan E., et al.
Publicado: (2021)