Cargando…

Uncoupling conformational states from activity in an allosteric enzyme

ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we devel...

Descripción completa

Detalles Bibliográficos
Autores principales: Pisco, João P., de Chiara, Cesira, Pacholarz, Kamila J., Garza-Garcia, Acely, Ogrodowicz, Roksana W., Walker, Philip A., Barran, Perdita E., Smerdon, Stephen J., de Carvalho, Luiz Pedro S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545217/
https://www.ncbi.nlm.nih.gov/pubmed/28781362
http://dx.doi.org/10.1038/s41467-017-00224-0
Descripción
Sumario:ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-l-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and l-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited l-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain.