Cargando…

EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF

Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monov...

Descripción completa

Detalles Bibliográficos
Autores principales: Salova, Anna V., Belyaeva, Tatiana N., Leontieva, Ekaterina A., Kornilova, Elena S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546484/
https://www.ncbi.nlm.nih.gov/pubmed/28574831
http://dx.doi.org/10.18632/oncotarget.17873
_version_ 1783255557689311232
author Salova, Anna V.
Belyaeva, Tatiana N.
Leontieva, Ekaterina A.
Kornilova, Elena S.
author_facet Salova, Anna V.
Belyaeva, Tatiana N.
Leontieva, Ekaterina A.
Kornilova, Elena S.
author_sort Salova, Anna V.
collection PubMed
description Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker.
format Online
Article
Text
id pubmed-5546484
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Impact Journals LLC
record_format MEDLINE/PubMed
spelling pubmed-55464842017-08-23 EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF Salova, Anna V. Belyaeva, Tatiana N. Leontieva, Ekaterina A. Kornilova, Elena S. Oncotarget Research Paper Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker. Impact Journals LLC 2017-05-15 /pmc/articles/PMC5546484/ /pubmed/28574831 http://dx.doi.org/10.18632/oncotarget.17873 Text en Copyright: © 2017 Salova et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Paper
Salova, Anna V.
Belyaeva, Tatiana N.
Leontieva, Ekaterina A.
Kornilova, Elena S.
EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title_full EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title_fullStr EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title_full_unstemmed EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title_short EGF receptor lysosomal degradation is delayed in the cells stimulated with EGF-Quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native EGF
title_sort egf receptor lysosomal degradation is delayed in the cells stimulated with egf-quantum dot bioconjugate but earlier key events of endocytic degradative pathway are similar to that of native egf
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546484/
https://www.ncbi.nlm.nih.gov/pubmed/28574831
http://dx.doi.org/10.18632/oncotarget.17873
work_keys_str_mv AT salovaannav egfreceptorlysosomaldegradationisdelayedinthecellsstimulatedwithegfquantumdotbioconjugatebutearlierkeyeventsofendocyticdegradativepathwayaresimilartothatofnativeegf
AT belyaevatatianan egfreceptorlysosomaldegradationisdelayedinthecellsstimulatedwithegfquantumdotbioconjugatebutearlierkeyeventsofendocyticdegradativepathwayaresimilartothatofnativeegf
AT leontievaekaterinaa egfreceptorlysosomaldegradationisdelayedinthecellsstimulatedwithegfquantumdotbioconjugatebutearlierkeyeventsofendocyticdegradativepathwayaresimilartothatofnativeegf
AT kornilovaelenas egfreceptorlysosomaldegradationisdelayedinthecellsstimulatedwithegfquantumdotbioconjugatebutearlierkeyeventsofendocyticdegradativepathwayaresimilartothatofnativeegf