Cargando…
Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for uns...
Autores principales: | Wu, Jiayi, Ma, Yong-Bei, Congdon, Charles, Brett, Bevin, Chen, Shuobing, Xu, Yaofang, Ouyang, Qi, Mao, Youdong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546606/ https://www.ncbi.nlm.nih.gov/pubmed/28786986 http://dx.doi.org/10.1371/journal.pone.0182130 |
Ejemplares similares
-
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
por: Xu, Yaofang, et al.
Publicado: (2016) -
An Unsupervised Classification Algorithm for Heterogeneous Cryo-EM Projection Images Based on Autoencoders
por: Wang, Xiangwen, et al.
Publicado: (2023) -
AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in Cryo-EM images
por: Al-Azzawi, Adil, et al.
Publicado: (2019) -
Recovery of Conformational Continuum From Single-Particle Cryo-EM Images: Optimization of ManifoldEM Informed by Ground Truth
por: Seitz, Evan, et al.
Publicado: (2022) -
Unsupervised manifold learning of collective behavior
por: Titus, Mathew, et al.
Publicado: (2021)