Cargando…
Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia
The prediction of relapse in childhood acute lymphoblastic leukemia (ALL) is a critical factor for successful treatment and follow-up planning. Our goal was to construct an ALL relapse prediction model based on machine learning algorithms. Monte Carlo cross-validation nested by 10-fold cross-validat...
Autores principales: | Pan, Liyan, Liu, Guangjian, Lin, Fangqin, Zhong, Shuling, Xia, Huimin, Sun, Xin, Liang, Huiying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547099/ https://www.ncbi.nlm.nih.gov/pubmed/28784991 http://dx.doi.org/10.1038/s41598-017-07408-0 |
Ejemplares similares
-
Developing a Machine Learning System for Identification of Severe Hand, Foot, and Mouth Disease from Electronic Medical Record Data
por: Liu, Guangjian, et al.
Publicado: (2017) -
Machine learning identifies girls with central precocious puberty based on multisource data
por: Pan, Liyan, et al.
Publicado: (2020) -
FPGS relapse-specific mutations in relapsed childhood acute lymphoblastic leukemia
por: Yu, Sung-Liang, et al.
Publicado: (2020) -
Machine Learning Algorithms Identify Pathogen-Specific Biomarkers of Clinical and Metabolomic Characteristics in Septic Patients with Bacterial Infections
por: Zheng, Lingling, et al.
Publicado: (2020) -
TP53 alterations in relapsed childhood acute lymphoblastic leukemia
por: Yu, Chih‐Hsiang, et al.
Publicado: (2019)