Cargando…
Bio-implant as a novel restoration for tooth loss
A dental implant is used to replace a missing tooth. Fixing the implant in its natural position requires the engineering of a substantial amount of conformal bone growth inside the implant socket, osseointegration. However, this conventional implant attachment does not include the periodontal ligame...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547161/ https://www.ncbi.nlm.nih.gov/pubmed/28784994 http://dx.doi.org/10.1038/s41598-017-07819-z |
Sumario: | A dental implant is used to replace a missing tooth. Fixing the implant in its natural position requires the engineering of a substantial amount of conformal bone growth inside the implant socket, osseointegration. However, this conventional implant attachment does not include the periodontal ligament (PDL), which has a fundamental role in cushioning high mechanical loads. As a result, tooth implants have a shorter lifetime than the natural tooth and have a high chance of infections. We have engineered a “bio-implant” that provides a living PDL connection for titanium implants. The bio-implant consists of a hydroxyapatite coated titanium screw, ensheathed in cell sheets made from immortalized human periodontal cells. Bio-implants were transplanted into the upper first molar region of a tooth-extraction mouse model. Within 8 weeks the bio-implant generated fibrous connective tissue, a localised blood vessel network and new bone growth fused into the alveolar bone socket. The study presents a bio-implant engineered with human cells, specialised for the root connection, and resulted in the partial reconstruction of a naturalised tooth attachment complex (periodontium), consisting of all the principal tissue types, cementum, PDL and alveolar bone. |
---|