Cargando…
Real-time fMRI data for testing OpenNFT functionality
Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547236/ https://www.ncbi.nlm.nih.gov/pubmed/28795112 http://dx.doi.org/10.1016/j.dib.2017.07.049 |
_version_ | 1783255678950834176 |
---|---|
author | Koush, Yury Ashburner, John Prilepin, Evgeny Sladky, Ronald Zeidman, Peter Bibikov, Sergei Scharnowski, Frank Nikonorov, Artem Van De Ville, Dimitri |
author_facet | Koush, Yury Ashburner, John Prilepin, Evgeny Sladky, Ronald Zeidman, Peter Bibikov, Sergei Scharnowski, Frank Nikonorov, Artem Van De Ville, Dimitri |
author_sort | Koush, Yury |
collection | PubMed |
description | Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases. |
format | Online Article Text |
id | pubmed-5547236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-55472362017-08-09 Real-time fMRI data for testing OpenNFT functionality Koush, Yury Ashburner, John Prilepin, Evgeny Sladky, Ronald Zeidman, Peter Bibikov, Sergei Scharnowski, Frank Nikonorov, Artem Van De Ville, Dimitri Data Brief Neuroscience Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases. Elsevier 2017-07-26 /pmc/articles/PMC5547236/ /pubmed/28795112 http://dx.doi.org/10.1016/j.dib.2017.07.049 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Neuroscience Koush, Yury Ashburner, John Prilepin, Evgeny Sladky, Ronald Zeidman, Peter Bibikov, Sergei Scharnowski, Frank Nikonorov, Artem Van De Ville, Dimitri Real-time fMRI data for testing OpenNFT functionality |
title | Real-time fMRI data for testing OpenNFT functionality |
title_full | Real-time fMRI data for testing OpenNFT functionality |
title_fullStr | Real-time fMRI data for testing OpenNFT functionality |
title_full_unstemmed | Real-time fMRI data for testing OpenNFT functionality |
title_short | Real-time fMRI data for testing OpenNFT functionality |
title_sort | real-time fmri data for testing opennft functionality |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547236/ https://www.ncbi.nlm.nih.gov/pubmed/28795112 http://dx.doi.org/10.1016/j.dib.2017.07.049 |
work_keys_str_mv | AT koushyury realtimefmridatafortestingopennftfunctionality AT ashburnerjohn realtimefmridatafortestingopennftfunctionality AT prilepinevgeny realtimefmridatafortestingopennftfunctionality AT sladkyronald realtimefmridatafortestingopennftfunctionality AT zeidmanpeter realtimefmridatafortestingopennftfunctionality AT bibikovsergei realtimefmridatafortestingopennftfunctionality AT scharnowskifrank realtimefmridatafortestingopennftfunctionality AT nikonorovartem realtimefmridatafortestingopennftfunctionality AT vandevilledimitri realtimefmridatafortestingopennftfunctionality |