Cargando…

Real-time fMRI data for testing OpenNFT functionality

Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants...

Descripción completa

Detalles Bibliográficos
Autores principales: Koush, Yury, Ashburner, John, Prilepin, Evgeny, Sladky, Ronald, Zeidman, Peter, Bibikov, Sergei, Scharnowski, Frank, Nikonorov, Artem, Van De Ville, Dimitri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547236/
https://www.ncbi.nlm.nih.gov/pubmed/28795112
http://dx.doi.org/10.1016/j.dib.2017.07.049
_version_ 1783255678950834176
author Koush, Yury
Ashburner, John
Prilepin, Evgeny
Sladky, Ronald
Zeidman, Peter
Bibikov, Sergei
Scharnowski, Frank
Nikonorov, Artem
Van De Ville, Dimitri
author_facet Koush, Yury
Ashburner, John
Prilepin, Evgeny
Sladky, Ronald
Zeidman, Peter
Bibikov, Sergei
Scharnowski, Frank
Nikonorov, Artem
Van De Ville, Dimitri
author_sort Koush, Yury
collection PubMed
description Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases.
format Online
Article
Text
id pubmed-5547236
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-55472362017-08-09 Real-time fMRI data for testing OpenNFT functionality Koush, Yury Ashburner, John Prilepin, Evgeny Sladky, Ronald Zeidman, Peter Bibikov, Sergei Scharnowski, Frank Nikonorov, Artem Van De Ville, Dimitri Data Brief Neuroscience Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases. Elsevier 2017-07-26 /pmc/articles/PMC5547236/ /pubmed/28795112 http://dx.doi.org/10.1016/j.dib.2017.07.049 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Neuroscience
Koush, Yury
Ashburner, John
Prilepin, Evgeny
Sladky, Ronald
Zeidman, Peter
Bibikov, Sergei
Scharnowski, Frank
Nikonorov, Artem
Van De Ville, Dimitri
Real-time fMRI data for testing OpenNFT functionality
title Real-time fMRI data for testing OpenNFT functionality
title_full Real-time fMRI data for testing OpenNFT functionality
title_fullStr Real-time fMRI data for testing OpenNFT functionality
title_full_unstemmed Real-time fMRI data for testing OpenNFT functionality
title_short Real-time fMRI data for testing OpenNFT functionality
title_sort real-time fmri data for testing opennft functionality
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547236/
https://www.ncbi.nlm.nih.gov/pubmed/28795112
http://dx.doi.org/10.1016/j.dib.2017.07.049
work_keys_str_mv AT koushyury realtimefmridatafortestingopennftfunctionality
AT ashburnerjohn realtimefmridatafortestingopennftfunctionality
AT prilepinevgeny realtimefmridatafortestingopennftfunctionality
AT sladkyronald realtimefmridatafortestingopennftfunctionality
AT zeidmanpeter realtimefmridatafortestingopennftfunctionality
AT bibikovsergei realtimefmridatafortestingopennftfunctionality
AT scharnowskifrank realtimefmridatafortestingopennftfunctionality
AT nikonorovartem realtimefmridatafortestingopennftfunctionality
AT vandevilledimitri realtimefmridatafortestingopennftfunctionality