Cargando…
Evolution of Reduced Graphene Oxide–SnS(2) Hybrid Nanoparticle Electrodes in Li-Ion Batteries
[Image: see text] Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547442/ https://www.ncbi.nlm.nih.gov/pubmed/28804530 http://dx.doi.org/10.1021/acs.jpcc.7b02878 |
_version_ | 1783255690292232192 |
---|---|
author | Modarres, Mohammad H. Lim, Jonathan Hua-Wei George, Chandramohan De Volder, Michael |
author_facet | Modarres, Mohammad H. Lim, Jonathan Hua-Wei George, Chandramohan De Volder, Michael |
author_sort | Modarres, Mohammad H. |
collection | PubMed |
description | [Image: see text] Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide–tin sulfide (rGO-SnS(2)) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS(2) nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance. |
format | Online Article Text |
id | pubmed-5547442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-55474422017-08-09 Evolution of Reduced Graphene Oxide–SnS(2) Hybrid Nanoparticle Electrodes in Li-Ion Batteries Modarres, Mohammad H. Lim, Jonathan Hua-Wei George, Chandramohan De Volder, Michael J Phys Chem C Nanomater Interfaces [Image: see text] Hybrid nanomaterials where active battery nanoparticles are synthesized directly onto conductive additives such as graphene hold the promise of improving the cyclability and energy density of conversion and alloying type Li-ion battery electrodes. Here we investigate the evolution of hybrid reduced graphene oxide–tin sulfide (rGO-SnS(2)) electrodes during battery cycling. These hybrid nanoparticles are synthesized by a one-step solvothermal microwave reaction which allows for simultaneous synthesis of the SnS(2) nanocrystals and reduction of GO. Despite the hybrid architecture of these electrodes, electrochemical impedance spectroscopy shows that the impedance doubles in about 25 cycles and subsequently gradually increases, which may be caused by an irreversible surface passivation of rGO by sulfur enriched conversion products. This surface passivation is further confirmed by post-mortem Raman spectroscopy of the electrodes, which no longer detects rGO peaks after 100 cycles. Moreover, galvanostatic intermittent titration analysis during the 1st and 100th cycles shows a drop in Li-ion diffusion coefficient of over an order of magnitude. Despite reports of excellent cycling performance of hybrid nanomaterials, our work indicates that in certain electrode systems, it is still critical to further address passivation and charge transport issues between the active phase and the conductive additive in order to retain high energy density and cycling performance. American Chemical Society 2017-05-30 2017-06-22 /pmc/articles/PMC5547442/ /pubmed/28804530 http://dx.doi.org/10.1021/acs.jpcc.7b02878 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Modarres, Mohammad H. Lim, Jonathan Hua-Wei George, Chandramohan De Volder, Michael Evolution of Reduced Graphene Oxide–SnS(2) Hybrid Nanoparticle Electrodes in Li-Ion Batteries |
title | Evolution of Reduced Graphene Oxide–SnS(2) Hybrid
Nanoparticle Electrodes in Li-Ion Batteries |
title_full | Evolution of Reduced Graphene Oxide–SnS(2) Hybrid
Nanoparticle Electrodes in Li-Ion Batteries |
title_fullStr | Evolution of Reduced Graphene Oxide–SnS(2) Hybrid
Nanoparticle Electrodes in Li-Ion Batteries |
title_full_unstemmed | Evolution of Reduced Graphene Oxide–SnS(2) Hybrid
Nanoparticle Electrodes in Li-Ion Batteries |
title_short | Evolution of Reduced Graphene Oxide–SnS(2) Hybrid
Nanoparticle Electrodes in Li-Ion Batteries |
title_sort | evolution of reduced graphene oxide–sns(2) hybrid
nanoparticle electrodes in li-ion batteries |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547442/ https://www.ncbi.nlm.nih.gov/pubmed/28804530 http://dx.doi.org/10.1021/acs.jpcc.7b02878 |
work_keys_str_mv | AT modarresmohammadh evolutionofreducedgrapheneoxidesns2hybridnanoparticleelectrodesinliionbatteries AT limjonathanhuawei evolutionofreducedgrapheneoxidesns2hybridnanoparticleelectrodesinliionbatteries AT georgechandramohan evolutionofreducedgrapheneoxidesns2hybridnanoparticleelectrodesinliionbatteries AT devoldermichael evolutionofreducedgrapheneoxidesns2hybridnanoparticleelectrodesinliionbatteries |