Cargando…
A statistical framework for analyzing deep mutational scanning data
Deep mutational scanning is a widely used method for multiplex measurement of functional consequences of protein variants. We developed a new deep mutational scanning statistical model that generates error estimates for each measurement, capturing both sampling error and consistency between replicat...
Autores principales: | Rubin, Alan F., Gelman, Hannah, Lucas, Nathan, Bajjalieh, Sandra M., Papenfuss, Anthony T., Speed, Terence P., Fowler, Douglas M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547491/ https://www.ncbi.nlm.nih.gov/pubmed/28784151 http://dx.doi.org/10.1186/s13059-017-1272-5 |
Ejemplares similares
-
Correction to: A statistical framework for analyzing deep mutational scanning data
por: Rubin, Alan F., et al.
Publicado: (2018) -
GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly
por: Cameron, Daniel L., et al.
Publicado: (2017) -
FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data
por: Sboner, Andrea, et al.
Publicado: (2010) -
Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data
por: Balwierz, Piotr J, et al.
Publicado: (2009) -
MPRAnalyze: statistical framework for massively parallel reporter assays
por: Ashuach, Tal, et al.
Publicado: (2019)