Cargando…
Prototype Generation Using Self-Organizing Maps for Informativeness-Based Classifier
The k nearest neighbor is one of the most important and simple procedures for data classification task. The kNN, as it is called, requires only two parameters: the number of k and a similarity measure. However, the algorithm has some weaknesses that make it impossible to be used in real problems. Si...
Autores principales: | Moreira, Leandro Juvêncio, Silva, Leandro A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5547710/ https://www.ncbi.nlm.nih.gov/pubmed/28811818 http://dx.doi.org/10.1155/2017/4263064 |
Ejemplares similares
-
Community health assessment using self-organizing maps and geographic information systems
por: Basara, Heather G, et al.
Publicado: (2008) -
Simple hemogram to support the decision-making of COVID-19 diagnosis using clusters analysis with self-organizing maps neural network
por: Souza, Alexandra A. de, et al.
Publicado: (2021) -
Delocalization quantitatively mapped for prototypic organic nitroanions as well as azidoform anions
por: Belostotskii, Anatoly M.
Publicado: (2023) -
Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models
por: Mahony, Shaun, et al.
Publicado: (2004) -
Stationary distribution of self-organized states and biological information generation
por: Woo, Hyung Jun
Publicado: (2013)