Cargando…

Expression profile of circular RNAs in human gastric cancer tissues

Circular RNAs (circRNAs) represent a newly identified class of non-coding RNA molecules, which interfere with gene transcription by adsorbing microRNAs (miRNAs). CircRNAs serve important roles in disease development and have the potential to serve as a novel class of biomarkers for clinical diagnosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, You-Sheng, Jie, Na, Zou, Ke-Jian, Weng, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548015/
https://www.ncbi.nlm.nih.gov/pubmed/28737829
http://dx.doi.org/10.3892/mmr.2017.6916
Descripción
Sumario:Circular RNAs (circRNAs) represent a newly identified class of non-coding RNA molecules, which interfere with gene transcription by adsorbing microRNAs (miRNAs). CircRNAs serve important roles in disease development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in the occurrence and development of gastric cancer (GC) remains unclear. In the present study, the expression profiles of circRNAs were compared between GC and adjacent normal tissues using a circRNA microarray, following which quantitative polymerase chain reaction (qPCR) was used to confirm the results of the circRNA microarray. Compared with the adjacent, normal mucosal tissues, 16 circRNAs were upregulated and 84 circRNAs were downregulated in GC. A total of 10 circRNAs were selected for validation in three pairs of GC and adjacent noncancerous tissues. The qPCR results were consistent with the findings of the microarray-based expression analysis. Of the circRNAs studied, only circRNA-0026 (hsa_circ_0000026) exhibited significantly different expression in GC (2.8-fold, P=0.001). Furthermore, online Database for Annotation, Visualization and Integrated Discovery annotation was used to predict circRNA-targeted miRNA-gene interactions. The analysis revealed that circRNA-0026 may regulate RNA transcription, RNA metabolism, gene expression, gene silencing and other biological functions in GC. In conclusion, differential expression of circRNAs may be associated with GC tumorigenesis, and circRNA-0026 is a promising biomarker for GC diagnosis and targeted therapy.