Cargando…

Sex Differences in the Influence of Body Mass Index on Anatomical Architecture of Brain Networks

BACKGROUND/OBJECTIVE: The brain plays a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis b...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Arpana, Mayer, Emeran A., Hamadani, Kareem, Bhatt, Ravi, Fling, Connor, Alaverdyan, Mher, Torgenson, Carinna, Ashe-McNalley, Cody, Van Horn, John D, Naliboff, Bruce, Tillisch, Kirsten, Sanmiguel, Claudia P., Labus, Jennifer S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548596/
https://www.ncbi.nlm.nih.gov/pubmed/28360430
http://dx.doi.org/10.1038/ijo.2017.86
Descripción
Sumario:BACKGROUND/OBJECTIVE: The brain plays a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow, and global communication (centrality) in reward, salience and sensorimotor regions, and to identify sex-related differences in these parameters. SUBJECTS/METHODS: Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience, and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. RESULTS: In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus, nucleus accumbens) and salience (anterior mid cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. CONCLUSIONS: In individuals with increased BMI, reward, salience, and sensorimotor network regions are susceptible to topological restructuring in a sex related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology.