Cargando…

Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet

The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can dra...

Descripción completa

Detalles Bibliográficos
Autores principales: Bordács, S., Butykai, A., Szigeti, B. G., White, J. S., Cubitt, R., Leonov, A. O., Widmann, S., Ehlers, D., von Nidda, H.-A. Krug, Tsurkan, V., Loidl, A., Kézsmárki, I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548730/
https://www.ncbi.nlm.nih.gov/pubmed/28790441
http://dx.doi.org/10.1038/s41598-017-07996-x
_version_ 1783255863763402752
author Bordács, S.
Butykai, A.
Szigeti, B. G.
White, J. S.
Cubitt, R.
Leonov, A. O.
Widmann, S.
Ehlers, D.
von Nidda, H.-A. Krug
Tsurkan, V.
Loidl, A.
Kézsmárki, I.
author_facet Bordács, S.
Butykai, A.
Szigeti, B. G.
White, J. S.
Cubitt, R.
Leonov, A. O.
Widmann, S.
Ehlers, D.
von Nidda, H.-A. Krug
Tsurkan, V.
Loidl, A.
Kézsmárki, I.
author_sort Bordács, S.
collection PubMed
description The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV(4)Se(8), a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.
format Online
Article
Text
id pubmed-5548730
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55487302017-08-09 Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet Bordács, S. Butykai, A. Szigeti, B. G. White, J. S. Cubitt, R. Leonov, A. O. Widmann, S. Ehlers, D. von Nidda, H.-A. Krug Tsurkan, V. Loidl, A. Kézsmárki, I. Sci Rep Article The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV(4)Se(8), a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges. Nature Publishing Group UK 2017-08-08 /pmc/articles/PMC5548730/ /pubmed/28790441 http://dx.doi.org/10.1038/s41598-017-07996-x Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Bordács, S.
Butykai, A.
Szigeti, B. G.
White, J. S.
Cubitt, R.
Leonov, A. O.
Widmann, S.
Ehlers, D.
von Nidda, H.-A. Krug
Tsurkan, V.
Loidl, A.
Kézsmárki, I.
Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title_full Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title_fullStr Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title_full_unstemmed Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title_short Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
title_sort equilibrium skyrmion lattice ground state in a polar easy-plane magnet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548730/
https://www.ncbi.nlm.nih.gov/pubmed/28790441
http://dx.doi.org/10.1038/s41598-017-07996-x
work_keys_str_mv AT bordacss equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT butykaia equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT szigetibg equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT whitejs equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT cubittr equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT leonovao equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT widmanns equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT ehlersd equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT vonniddahakrug equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT tsurkanv equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT loidla equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet
AT kezsmarkii equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet