Cargando…
Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can dra...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548730/ https://www.ncbi.nlm.nih.gov/pubmed/28790441 http://dx.doi.org/10.1038/s41598-017-07996-x |
_version_ | 1783255863763402752 |
---|---|
author | Bordács, S. Butykai, A. Szigeti, B. G. White, J. S. Cubitt, R. Leonov, A. O. Widmann, S. Ehlers, D. von Nidda, H.-A. Krug Tsurkan, V. Loidl, A. Kézsmárki, I. |
author_facet | Bordács, S. Butykai, A. Szigeti, B. G. White, J. S. Cubitt, R. Leonov, A. O. Widmann, S. Ehlers, D. von Nidda, H.-A. Krug Tsurkan, V. Loidl, A. Kézsmárki, I. |
author_sort | Bordács, S. |
collection | PubMed |
description | The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV(4)Se(8), a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges. |
format | Online Article Text |
id | pubmed-5548730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-55487302017-08-09 Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet Bordács, S. Butykai, A. Szigeti, B. G. White, J. S. Cubitt, R. Leonov, A. O. Widmann, S. Ehlers, D. von Nidda, H.-A. Krug Tsurkan, V. Loidl, A. Kézsmárki, I. Sci Rep Article The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV(4)Se(8), a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges. Nature Publishing Group UK 2017-08-08 /pmc/articles/PMC5548730/ /pubmed/28790441 http://dx.doi.org/10.1038/s41598-017-07996-x Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Bordács, S. Butykai, A. Szigeti, B. G. White, J. S. Cubitt, R. Leonov, A. O. Widmann, S. Ehlers, D. von Nidda, H.-A. Krug Tsurkan, V. Loidl, A. Kézsmárki, I. Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title | Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title_full | Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title_fullStr | Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title_full_unstemmed | Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title_short | Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet |
title_sort | equilibrium skyrmion lattice ground state in a polar easy-plane magnet |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548730/ https://www.ncbi.nlm.nih.gov/pubmed/28790441 http://dx.doi.org/10.1038/s41598-017-07996-x |
work_keys_str_mv | AT bordacss equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT butykaia equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT szigetibg equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT whitejs equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT cubittr equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT leonovao equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT widmanns equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT ehlersd equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT vonniddahakrug equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT tsurkanv equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT loidla equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet AT kezsmarkii equilibriumskyrmionlatticegroundstateinapolareasyplanemagnet |