Cargando…

Integrated Experimental and Theoretical Studies of Stem Cells

PURPOSE OF REVIEW: Stem cells have to balance self-renewal and differentiation. The dynamic nature of these fate decisions has made stem cell study by traditional methods particularly challenging. Here we highlight recent advances in the field that draw on combining quantitative experiments and mode...

Descripción completa

Detalles Bibliográficos
Autores principales: Sladitschek, Hanna L., Neveu, Pierre A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548823/
https://www.ncbi.nlm.nih.gov/pubmed/28845388
http://dx.doi.org/10.1007/s40778-017-0096-2
Descripción
Sumario:PURPOSE OF REVIEW: Stem cells have to balance self-renewal and differentiation. The dynamic nature of these fate decisions has made stem cell study by traditional methods particularly challenging. Here we highlight recent advances in the field that draw on combining quantitative experiments and modeling to illuminate the biology of stem cells both in vitro and in vivo. RECENT FINDINGS: Recent studies have shown that seemingly complex processes such as the fate decision-making of stem cells or the self-organization of developing tissues obey remarkably simple mathematical models. Negative feedback loops appear to stabilize cellular states hereby ensuring robust fate decision-making and reproducible outcomes. Stochastic fate decisions can account for the great variability observed in biological systems. SUMMARY: The study of stem cells is hampered by the necessity to track the fate of a cell’s progeny over time. Confronting experiments with simple predictive models has allowed to circumvent this problem and gain insights from stem cell heterogeneity in vitro to organ morphogenesis.